DeEPn: A deep neural network based tool for enzyme functional annotation

Authors: Rahul Semwal, Imlimaong Aier, Pankaj Tyagi, Pritish Kumar Varadwaj
With the advancement of high throughput techniques, the discovery rate of enzyme sequences has increased significantly in the recent past. All of these raw sequences are required to be precisely mapped to their respective functional attributes, which helps in deciphering their biological role. In the recent past, various prediction models have been proposed to predict the enzyme functional class; however, all of these models were able to quantify at most six functional enzyme classes (EC1 to EC6) out of existing seven functional classes, making these approaches inappropriate for handling enzymes corresponding to the seventh functional class (EC7). In this study, a Deep Neural Network-based approach, DeEPn, has been proposed, which can quantify enzymes corresponding to all seven functional classes with high precision and accuracy. The proposed model was compared with two recently developed tools, ECPred and SVM-Prot. The result demonstrated that DeEPn outperformed ECPred and SVM-Prot in terms of predictive quality. The DeEPn tool has been hosted as a web-based tool at https://bioserver.iiita.ac.in/DeEPn/.